

AMC16Z DC Insulation Monitoring Device

Installation and Use Manual V1.2

ACREL CO., Ltd.

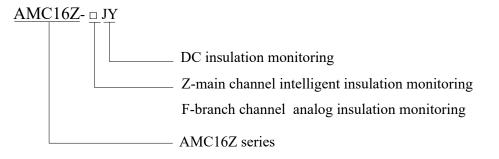
Declaration

The copyright is the property of Acrel. Any information in any paragraph or section cannot be extracted, copied or otherwise reproduced or propagated. Otherwise offenders shall take all consequences.

All rights are reserved.

Acrel reserves the right to modify the product specifications herein without notification. Please consult the local agent about the latest specifications before placing a purchase order.

Content


1 Overview	1
2 Model Specification	1
3 Product Function	
4 Technical Parameter	2
5 Installation Guide	3
5.1 Shape and installation dimension	3
5.2 Wiring Terminal	
5.3 Precautions	
6 The detailed MODBUS communication address is shown in the table below	6
6.1 Brief description of the protocol	6
6.2 Transfer method	6
6.3 Introduction to function codes	
6.4 Communication address	9
7 Common fault diagnosis and troubleshooting methods	

1 Overview

With the continuous expansion of network construction, the daily operation and maintenance management of the communication equipment room faces many difficulties: the number of computer rooms is large and the locations are scattered, which makes it difficult to detect faults and alarm in time; the power consumption of communication computer rooms is very large, and users need to strengthen management and improve the operation efficiency of server racks. In order to ensure the power and environmental safety of the communication room, there must be a suitable insulation monitoring system to achieve all-round green and reliable protection.

AMC16Z DC insulation monitoring device is a device for online real-time monitoring and management of the insulation status of DC system busbars and branches. This product cooperates with the DC leakage current sensor to detect the branch leakage current, and can monitor the A+B dual bus incoming line and the insulation status of up to 192 branch circuits. The products are mainly used in the monitoring and management of the insulation status of various DC power systems.

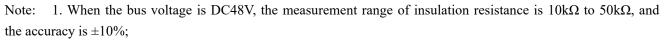
2 Model Specification

Model	Function description
	Monitor the busbar voltage, busbar-to-ground voltage, and busbar insulation status of the
AMC16Z-ZJY	A+B dual DC incoming circuit. One RS485 interface (A\B) is used to connect to the touch
	screen or RS485 hub. One RS485 interface (A1\B1) is used to connect AMC16Z-FJY.
	It is selected when externally equipped with an analog leakage current sensor. It is
	connected to the main module through the RS485 interface for monitoring the insulation
AMC16Z-FJY	state of the shunt. It can be expanded to 8 sets at most. It can be configured as the isolation
	state of 24 shunts of single-channel DC outlet, and 1-channel RS485 interface (A\B) is
	used to connect AMC16Z-ZJY.

3 Product Function

The DC insulation monitoring unit has the following functions when detecting busbar insulation:

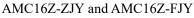
- Real-time online detection of the insulation condition of the DC system;
- When there is a single-pole grounding fault or a grounding fault occurs at the positive and negative poles at the same time (the grounding resistance is less than the insulation alarm setting value), it can accurately detect and issue an alarm within 10s;
- Display and record the polarity, insulation resistance value and occurrence time of the branch grounding bus;
- It has the function of setting the limit value of the insulation resistance of the DC system;
- When the front end is equipped with other insulation devices, the insulation device system can be configured through the background or touch screen, and the insulation state of the branch circuit can be detected without affecting the front end test system.

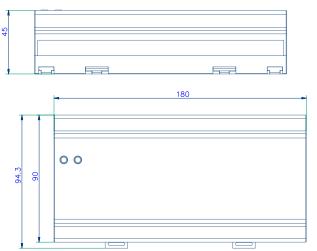

4 Technical Parameter AMC16Z-ZJY

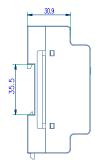
Technical Parameter		AMC16Z-ZJY	
Measurement Parameter		Busbar voltage, busabar insulation resistance	
A	uxiliary power	DC 24V(DC 22V~DC 26V)	
	Rated	48VDC,240VDC,336VDC	
Busbar Voltage	Measuring range	±20%	
voltage	Overload	Instantaneous voltage 2 times / sec	
	Busbar voltage	0.5 class	
	Incoming line to ground	$10k\Omega \le Ri \le 50k\Omega$ Error $\pm 5\%$	
Measurement Accuracy	insulation resistance	$51k\Omega \le Ri \le 100k\Omega$ Error $\pm 10\%$	
recurucy	Branch circuit to ground	$10k\Omega \le Ri \le 50k\Omega$ Error $\pm 5\%$	
	insulation resistance	51k $\Omega \le Ri \le 100 k\Omega$ Error $\pm 10\%$	
С	ommunication	RS485/Modbus-RTU	
P	rotection level	IP20	
P	Pollution level	2	
	Insulation	The insulation resistance between all terminals and the	
		conductive parts of the housing is not less than $100 M\Omega$	
Safety	Pressure resistance	The busbar voltage and other ports should meet AC2kV	
Salety		1min, the communication and auxiliary power should	
	Tressure resistance	meet AC1kV 1min, the leakage current should be less	
		than 2mA, no breakdown or flashover.	
	Anti-static interference	class 3	
	Immunity to fast transient	class 3	
Electromagnetic	bursts	class 5	
Compatibility	Anti-surge interference	class 3	
Companionity	Resistant to radio frequency		
	electromagnetic field	class 3	
	radiation		
Installation method		DIN35mm rail or bottom plate installation	
	Temperature	Work: -15°C~55°C Storage: -25°C~70°C	
Environment	Humidity	Relative humidity ≤93%	
	Altitude	≤2500m	

AMC16Z-FJY

Technical Parameter		AMC16Z-FJY
Measurement Parameter		Leakage current of 12 branches of A+B
A	uxiliary power	DC 12V~DC24V
	Rated	5V(DC leakage current sensor, requires external power
Current outlet circuit	Range	supply $\pm 12V$)
encun	Overload	Continuous 1.2 times, instantaneous 10 times/sec
Measurement	Branch circuit to ground	$10k\Omega \le Ri \le 50k\Omega \text{ error } \pm 5\%$

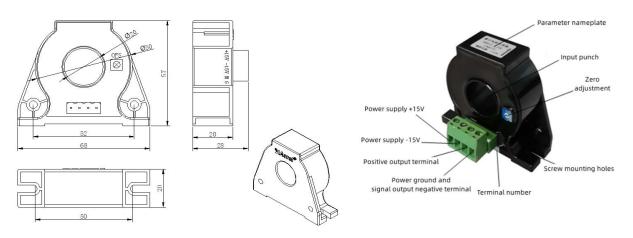

		$51k\Omega \le Ri \le 100k\Omega$ error $\pm 10\%$	
Communication		RS485/Modbus-RTU	
P	rotection level	IP20	
Р	Pollution level	2	
	Insulation	The insulation resistance between all terminals and the conductive parts of the housing is not less than $100M\Omega$	
Safety	Pressure resistance	A circuit voltage and current signal//B circuit voltage and current signal//The other ports should meet AC2kV 1min between each other, the leakage current should be less than 2mA, and there is no breakdown or flashover.	
	Anti-static interference	3 class	
Electromagnetic Compatibility	Resistant to radio frequency electromagnetic field radiation	3 class	
Installation method		DIN35mm rail or bottom plate installation	
	Temperature	Work: -15°C~55°C Storage: -25°C~70°C	
Environment	Humidity	Relative humidity ≤93%	
	Altitude	≤2500m	

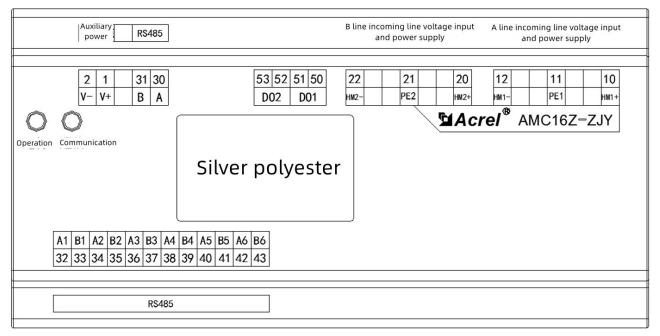



2. The input voltage of the branch DC leakage current sensor is 5V, and the default value of the primary side leakage current is 10mA.

5 Installation Guide

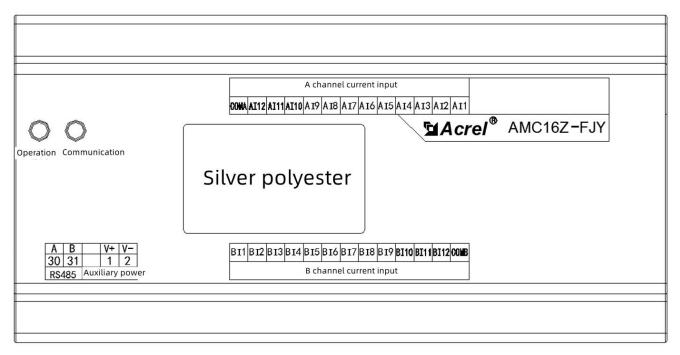
5.1 Shape and installation dimension




Unit: mm

Analog leakage current sensor

5.2 Wiring Terminal


AMC16Z-ZJY:

Terminal number	Definition	Description	Remark
1	V+	A	DCAUL
2	V-	Auxiliary power	DC 24V input
10	HM1+	A channel busbar voltage input +	
11	PE1	A channel is connected to the earth	A channel incoming line DC voltage input and power supply
12	HM1-	A channel busbar voltage input -	
20	HM2+	B channel busbar voltage input +	
21	PE2	B channel is connected to the earth	B channel incoming line DC voltage input and power supply
22	HM2-	B channel busbar voltage input -	

50	50 DO1 The first channel relay output		
30		Palay output	
51	The second channel	The second channel	Relay output
51	DO2	relay output	
30	А	RS485	Connect to touch screen or
31	В	communication	RS485 hub
32	A1	RS485	Connecting the AMC16Z-FJY
33	B1	communication	expansion module

AMC16Z-FJY:

Terminal number	Definition	Description	Remark	
1	V+	A	DC 12V- DC 24V innet	
2	V-	Auxiliary power	DC 12V~DC 24V input	
30	А	DC 495	Consister AMC1(7.71)	
31	В	RS485 communication	Connect to AMC16Z-ZJY	
AI1-AI12			A channel outgoing line DC current input	
СОМА		A channel current input	(12-channel DC leakage current sensor)	
BI1-BI12			B channel outgoing line DC current input	
СОМВ		B channel current input	(12-channel DC leakage current sensor)	

Analog leakage current sensor:

Serial number	Mark	Description
1	М	Analog output
2	G	working power ground
3	-	Working power DC12V negative
4	+	Working power DC12V positive

Note: The branch DC leakage current sensor needs to be purchased separately;

5.3 Precautions

The device should be installed in a dry, clean place away from heat sources and strong electromagnetic fields;

When wiring the device, pay attention to the input polarity of the DC bus voltage and leakage current sensor, otherwise the measurement will be inaccurate;

When wiring the DC leakage current sensor, it is necessary to pass the positive and negative branch busbars through the perforation at the same time;

When there are multiple expansion modules, each branch insulation module needs to use the touch screen to set the communication address;

Shielded twisted pair should be used for communication cables.

6 The detailed MODBUS communication address is shown in the table below

This protocol specifies the physical connection and communication protocol for data exchange between AMC16Z series DC precision power distribution monitoring device and data terminal equipment, and its protocol method is similar to the Modbus_RTU communication protocol.

6.1 Brief description of the protocol

The communication protocol used by AMC16Z series devices defines the data sequence definition of address code, function code and check code in detail, which are the necessary contents of specific data exchange. The protocol uses a master-slave acknowledgment connection (half duplex) over a single communication line, which means that signals travel in opposite directions on a single communication line. First, the signal from the host computer is addressed to a unique terminal device (slave), and then the response signal from the terminal device is transmitted to the host in the opposite direction.

This protocol only allows communication between the host (PC, PLC, etc.) and terminal equipment, and does not allow data exchange between independent terminal equipment, so that each terminal equipment will not occupy the communication line when they are initialized, but only respond to Inquiry signal to this unit.

6.2 Transfer method

The information transmission is asynchronous and takes bytes as the unit, and the communication information transmitted between the master and the slave is in 11-bit word format. It includes 1 start bit, 8 data bits (the least significant bit is sent first), parity check bit (no check), and 2 stop bits.

6.2.1 Data frame format

address code	function code	data area	CRC verification code
1 byte	1 byte	n bytes	2 bytes

6.2.2 Address field

The address field is at the beginning of the frame, consisting of one byte (8-bit binary code), and the decimal is 0 to 255. In our system, only 1 to 247 is used, and other addresses are reserved. These bits indicate the user-specified address of the end device that will receive data from the host connected to it. The address of each terminal device must be unique, and only the addressed terminal will respond to queries containing this address. When the terminal sends a response back, the slave address data in the response tells the host which terminal is communicating with.

6.2.3 Functional domain

The function field code tells the addressed terminal what function to perform. The following table lists the function codes used by this series of devices, as well as their meanings and functions.

code	Meaning	Action
03	read data register	Get the current binary value of one or more registers

16	Preset multiple registers	Set binary values to a series of multiple registers
----	---------------------------	---

6.2.4 Data field

The data field contains the data required by the terminal to perform a specific function or the data collected when the terminal responds to a query. The contents of these data may be numerical values, reference addresses or setting values. For example, the function field code tells the terminal to read a register, and the data field needs to indicate which register to start from and how many data to read. The embedded address and data vary according to the type and content of the slave.

6.2.5 Error check field

This field allows hosts and terminals to check for errors during transmission. Occasionally, due to electrical noise and other disturbances, a set of data may undergo some changes on the wire as it is transferred from one device to another. Error checking ensures that the host or terminal does not respond to data that has changed during transmission. This improves the security and efficiency of the system, and the 16-bit cyclic redundancy method (CRC16) is used for error checking.

6.2.6 Error detection method

The error check field occupies two bytes and contains a 16-bit binary value. The CRC value is calculated by the transmitting device and then appended to the data frame, the receiving device recalculates the CRC value when receiving the data, and then compares it with the value in the received CRC field, if the two values are not equal, it happens mistake.

During CRC operation, firstly, a 16-bit register is preset to all 1s, and then the 8 bits in each byte in the data frame are continuously operated with the current value of the register. Only the 8 data bits of each byte participate in the generation of the CRC, the start and stop bits and the possible use of parity bits do not affect the CRC. When generating the CRC, the 8 bits of each byte are XORed with the contents of the register, and then the result is shifted to the lower bits, the upper bits are supplemented with "0", and the lowest bit (LSB) is shifted out and detected. If it is 1, the register will perform an XOR operation with a preset fixed value (0A001H). If the lowest bit is 0, no processing will be performed.

The above processing is repeated until the 8 shift operations are performed. When the last bit (the 8th bit) is shifted, the next 8-bit byte is XORed with the current value of the register. Also perform the above-mentioned 8 shift XOR operations. When all the bytes in the data frame are processed, the final value generated is the CRC value.

The process of generating a CRC is:

(1) Preset a 16-bit register as 0FFFFH (all 1s), which is called a CRC register.

The 8 bits of the first byte in the data frame are XORed with the low byte in the CRC register, and the result is stored back in the CRC register.

Shift the CRC register one bit to the right, fill the highest bit with 0, and remove the lowest bit and check.

If the lowest bit is 0: repeat the third step (the next shift); if the lowest bit is 1: XOR the CRC register with a preset fixed value (0A001H).

Repeat steps 3 and 4 until 8 shifts. This completes a full eight bits.

(2) Repeat steps 2 to 5 to process the next eight bits until all bytes are processed.

The final CRC register value is the CRC value.

In addition, there is a method for calculating CRC by using a preset table. Its main feature is that the calculation speed is fast, but the table needs a large storage space. This method will not be repeated here, please refer to the relevant information.

6.3 Introduction to function codes

6.3.1 Function code 02H: read discrete input

This function code reads the continuous state of discrete input from 1 to 2000. The request PDU specifies the starting address, that is, the first input address and input number specified. Inputs are addressed from zero. So addressing inputs 1-16 are 0-15. The discrete input in the response message is divided into one input according to each bit of the data field. Indicated states are 1=ON and 0=OFF. The LSB (least significant bit) of the first data byte includes the input addressed in the query. Other inputs and so on, up to the high-order end of the byte, and in the order from low-order to high-order in subsequent bytes. If the returned input quantity is not a multiple of eight, the remaining bits in the last data byte (up to the high-order end of the byte) will be padded with zeros. The number of bytes field specifies the complete number of bytes of data.

8 1			 		
Host send		Send Message	Slave return		Return message
Address co	ode	01H	Address code		01H
Function code		02H	Function code		02H
			Number of bytes 02H		
Initial address	Low byte	06H	Input Status 14-7		3FH
	High byte	00H	Input Status 16-15		02H
Number of outputs	Low byte	0AH	CRC check	Low byte	29Н
CDC sharls as to	Low byte	18H	code	High byte	89H
CRC check code	High byte	0CH		·	

The following example is to read 10 consecutive switch states of DI7~DI16 from slave 01.

Represents discrete input states 14-7 as hexadecimal byte value 3F, or binary 0011 1111. Input 14 is the MSB of this byte and input 7 is the LSB of this byte.

Represents discrete input states 16-15 as byte value 02 in hexadecimal, or 0000 0010 in binary. Input 15 is the LSB, zero-padding the remaining bits in the last data byte.

6.3.2 Function code 03H: read register

This function allows the user to obtain the data and system parameters collected and recorded by the device. There is no limit to the number of data requested by the host at one time, but it cannot exceed the defined address range.

The following example is to read 3 basic data collected from slave 01 (each address in the data frame occupies 2 bytes) Uab, Ubc, Uca. The address of Uab is 03H, the address of Ubc is 04H, and the address of Uca is 05H.

Host send	Send Message	
Address co	ode	01H
Function co	ode	03H
Initial address	High byte	00H
Initial address	Low byte	03H
Number of accistons	High byte	00H
Number of registers	Low byte	03H
CRC check code	Low byte	F5H
CRC check code	High byte	СВН

Slave re	Return message	
Address	code	01H
Function	code	03H
Number o	of bytes	06H
Desistan data	High byte	0EH
Register data	Low byte	EEH
Desister lete	High byte	0EH
Register data	Low byte	E8H
	High byte	0EH
Register data	Low byte	E9H
CRC check	Low byte	8FH
code	High byte	7EH

6.3.3 Function code 10H: write multiple registers

Function code 10H allows users to change the contents of multiple registers, and the system parameters and switch output status of the instrument can be written in with this function number. The host can write up to 16 (32 bytes) of data at a time.

The following example is that the meter with the preset address of 01 simultaneously outputs the digital DO. The address of the switch output status indication register is 0045H, and the first bit corresponds to DO.

Host send	Send Message	
Address code	2	01H
Function cod	e	10H
Initial address	High byte	00H
mitial address	Low byte	45H
Number of registers	High byte	00H
Number of registers	Low byte	01H
Number of byt	es	02H
0045H Data to be written	High byte	00H
0045H Data to be written	Low byte	01H
CRC check code	Low byte	69H
	High byte	05H

Slave re	Slave return			
Address	code	01H		
Function	Function code			
Initial	High byte	00H		
address	Low byte	45H		
Number of	High byte	00H		
registers	Low byte	01H		
CRC check	Low byte	10H		
code	High byte	1CH		

6.4 Communication address

Serial number	Variable	Address	Read/ Write	Word Length	Unit	Data Type	Remark
1	Address	00H	R/W	1	NONE	Uint16	1~247
2	Baud rate	01H	R/W	1	NONE	Uint16	0:115200 1:2400 2:4800 3:9600 4:19200 5:38400 6:57600
3	Check Digit	02H	R/W	1	NONE	Uint16	0: no parity 2: odd parity 3: Even parity
4	Reserve	03H	R/W	1	NONE	Uint16	Reserved
5	Rated voltage	04H	R/W	1	V	Uint16	48V,240V,336V
6	Reserve	05H	R/W	1	NONE	Uint16	Reserved
7	Busbar voltage ratio	06H	R/W	1	NONE	Uint16	Reserved
8	Leakage current transformation ratio	07H	R/W	1	NONE	Uint16	Reserved
9	Reserve	08H~0DH	R/W	1	NONE	Uint16	Reserved

					1		
10	Maincircuitinsulationresistancealarm	0EH	R/W	1	kΩ	Uint16	
11	Branch circuit insulation resistance low alarm	0FH	R/W	1	kΩ	Uint16	
12	Busbar voltage high point alarm	10H	R/W	1	V	Uint16	
13	Busbar voltage low point alarm	11H	R/W	1	V	Uint16	
14	Current zero calibration	12H	R/W	1	NONE	Uint16	The high bit is: 0x86 (representing A channel 1-96) The high bit is: 0x87 (representing B channel 1-96) The high bit is: 0x88 (indicates that 1-192 is not divided into AB road) The low bits are: 0x01-0xC0 0xff: all calibration
15	Numberofbranches	13H	R/W	1	NONE	Uint16	1~8
16	Tributary access mode	14H	R/W	1	NONE	Uint16	0x00: one in and one out 0x01: one in and two out 0x02: Two in and one out 0x03: Two in and two out
17	Busbar insulation measurement enable	15H	R/W	1	NONE	Uint16	0x01: on (pre-stage without insulation measurement) 0x00: off (pre-stage has insulation measurement)
18	Branch address	16H	R/W	1	NONE	Uint16	Reserved
19	Branch baud rate	17H	R/W	1	NONE	Uint16	Reserved
20	Host sending times	18H~19H	R	2	NONE	Uint32	
21	Slave returing times	1AH~1BH	R	2	NONE	Uint32	
22	Year, Month	1CH	R/W	1	NONE	Uint16	
23	Day, Week	1DH	R/W	1	NONE	Uint16	
24	Hour, Reserved	1EH	R/W	1	NONE	Uint16	
25	Minute, Second	1FH	R/W	1	NONE	Uint16	
26	Alarm delay	20H	R/W	1	0.1s	Uint16	
27	Bus voltage alarm hysteresis	21H	R/W	1	V	Uint16	
28	Busbar insulation resistance alarm hysteresis	22H	R/W	1	kΩ	Uint16	

29	Branch insulation resistance alarm hysteresis	23Н	R/W	1	kΩ	Uint16	
30	A channel busbar voltage alarm enable	24H	R/W	1	NONE	Uint16	0x00: Ban 0x01: Allowed
31	B channel busbar voltage alarm enable	25H	R/W	1	NONE	Uint16	0x00: Ban 0x01: Allowed
32	A channel busbar insulation resistance alarm enable	26Н	R/W	1	NONE	Uint16	0x00: Ban 0x01: Allowed
33	B channel busbar insulation resistance alarm enable	27Н	R/W	1	NONE	Uint16	0x00: Ban 0x01: Allowed
34	Branch insulation resistance alarm enable	28H	R/W	1	NONE	Uint16	0x00: Open 0x01: Close
35	DO1	29H	R/W	1	NONE	Uint16	0x00: Open 0x01: Close
36	DO2	2AH	R/W	1	NONE	Uint16	0x00: Open 0x01: Close
37	Reserved	2BH-2DH	R/W	3	NONE	Uint16	Reserved
38	Event logging clear	2EH	R/W	1	NONE	Uint16	0x8866

Electrical parameter data area (0x30H start, 03H command)

Serial number	Description	Word address	Read/ Write	Word Length	Unit	Data Type	Remark
1	1-segment busbar height value	30H~31H	R	2	V	float	
2	1-segment busbar low ground value	32H~33H	R	2	V	float	
3	1-segment busbar voltage value	34H~35H	R	2	V	float	
4	1-segment busbar positive-to-ground resistance	36H~37H	R	2	V	float	
5	1-segment busbar negative-to-ground resistance	38H~39H	R	2	V	float	
6	2-segment busbar height value	3AH~3BH	R	2	V	float	
7	2-segment busbar low ground value	3CH~3DH	R	2	V	float	
8	2-segment busbar voltage value	3EH~3FH	R	2	V	float	
9	2-segment busbar positive-to-ground resistance	40H~41H	R	2	V	float	
10	2-segment busbar negative-to-ground resistance	42H~43H	R	2	V	float	
11	A channel busbar branch positive-to-ground Insulation resistance $1 \sim 192$	44H~103H	R	1	KΩ	Uint16	One decimal
12	A channel busbar branch negative-to-ground Insulation resistance $1 \sim 192$	104H~1C3H	R	1	KΩ	Uint16	One decimal
13	B channel busbar branch positive-to-ground	1C4H~223H	R	1	KΩ	Uint16	One

	Insulation resistance 1~96						decimal
14	B channel busbar branch negative-to-ground Insulation resistance $1 \sim 96$	224H~283H	R	1	KΩ	Uint16	One decimal

Remote signaling (01H, 02H)

Serial number	Description	Bit address	Read/ Write	Remark
1	Busbar A positive-to-ground insulation resistance alarm	0	R	0 is invalid,1 is valid
2	Busbar B positive-to-ground insulation resistance alarm	1	R	
3	Busbar A negative-to-ground insulation resistance alarm	2	R	
4	Busbar B negative-to-ground insulation resistance alarm	3	R	
5	Busbar A high voltage alarm	4	R	
6	Busbar B high voltage alarm	5	R	
7	Busbar A low voltage alarm	6	R	
8	Busbar B low voltage alarm	7	R	
9	A channel busbar branch positive-to-ground Insulation resistance (1-192)	8-199	R	
10	A channel busbar branch negative-to-ground Insulation resistance (1-192)	200-391	R	
11	B channel busbar branch positive-to-ground Insulation resistance (1-96)	392-487	R	
12	B channel busbar branch negative-to-ground Insulation resistance (1-96)	488-583	R	

Event logging read send data frame

Read the latest event logging	01 03 10 00 00 0C 41 0F
Repeat the last read operation	01 03 10 0C 00 0C 81 0C
Read the previous event logging	01 03 10 18 00 0C C1 08

Return dataframe

Return frame 01 03 18 12 01 01 08 05 11 00 03 02 00 00 1c 01 13 03 72 01 20 00 C0 43 70 1e b8 30 cc

Description:

01: Slave address

03: Function code

18: Hexadecimal, decimal is 24, indicating that there are 24 bytes of data behind

30 cc: Cyclic Redundancy Check Code

The meaning of 24 bytes of data is in turn

Meaning	Return value	decimal	Unit	Remark
Year (Alarm time)	12	18		
Month (Alarm time)	01	1		
Day (Alarm time)	01	1		
Hour (Alarm time)	08	8		
Minutes (Alarm time)	05	5		
Second (Alarm time)	11	17		
Alarm type		3		1: High voltage alarm
	0003			2: Low voltage alarm
	0005			3: Positive to ground insulation alarm
				4: Negative to ground insulation alarm
Alarm loop	02	2		1: A channel busbar

				2: B channel busbar
				3: A channel branch
				4: B channel branch
Circuit number	00	0		When the busbar alarms, the circuit
				number is 0;
				When the branch alarms, it indicates the
				specific branch number
Insulation alarm setpoint	001C	28	KΩ	Uint16_t
Positive resistance to ground when	0113	275	KΩ	Uint16 t (with one decimal)
alarming	0115			
Negative resistance to ground	0372	882	KΩ	Uint16_t (with one decimal)
during alarm	0372			
Busbar voltage high alarm	0120	288	V	Uint16_t
Busbar voltage low alarm	00C0	192	V	Uint16_t
Busbar voltage value	43 70 1e b8	240.12	V	Float

7 Common fault diagnosis and troubleshooting methods

7.1 Inaccurate device measurements

* Check whether the wiring of voltage and branch leakage current is correct;

* Check whether the rated leakage current value of the branch leakage current sensor is consistent with the internal setting of the device;

7.2 Unable to read branch insulation data

* Check whether the communication address of the branch expansion module is set;

7.3 Communication is abnormal

* Check whether the communication cable is connected properly;

* Check whether A and B terminals of the communication are interleaved;

* Check whether the address of the device is set correctly, and whether the communication baud rate is set correctly;

* When the multi-device communication is not normal, first try to see whether the single-device communication is normal.;

7.4 Insulation abnormality alarm of branch circuit under normal working condition of the system

* Check whether the wiring of the leakage current sensor is correct, and whether there is only one wire perforated

* Check whether the leakage current sensor has zero drift (the zero point of the leakage current sensor is inconsistent, the difference is large, and it needs to be adjusted)

Modification record:

Date	Old version	New version	Modification content
2019.10.15		V1.0	Writing for the first time
2020.04.11	V1.0	V1.1	 Delete the content of the intelligent leakage current sensor in the model specifications, technical parameters and installation guide; Modify the mailing address table.
2021.01.22	V1.1	V1.2	In technical parameters and terminals, the auxiliary power supply of AMC16Z-ZJY is changed from DC12V to DC24V; the auxiliary power supply of AMC16Z-FJY is changed from DC12V to DC 12V~24V.

Headquarters: Acrel Co., LTD. Address: No.253 Yulv Road Jiading District, Shanghai, China TEL.: 0086-21-69158338 0086-21-69156052 0086-21-59156392 0086-21-69156971 Fax: 0086-21-69158303 Web-site: www.acrel-electric.com mail: ACREL008@vip.163.com Postcode: 201801

Manufacturer: Jiangsu Acrel Electrical Manufacturing Co., LTD. Address: No.5 Dongmeng Road,Dongmeng industrial Park, Nanzha Street,Jiangyin City,Jiangsu Province,China TEL: 0086-510-86179966 Fax: 0086-510-86179975 Web-site: www.jsacrel.com Postcode: 214405 E-mail: sales@email.acrel.cn